Advanced Computer Graphics Introduction to Ray-Tracing and Physically-Based Rendering

G. Zachmann

University of Bremen, Germany cgvr.cs.uni-bremen.de

Bemen
 Ⓤ The Ongoing Quest for Realistic Images

"Parrhasios, it is recorded, entered into a competition with Zeuxis, who produced a picture of grapes so successfully represented that birds flew up to the stage buildings [in the theater, which served at that time as a public art gallery]; whereupon Parrhasios himself produced such a realistic picture of a curtain that Zeuxis, proud of the verdict of the birds, requested that the curtain should now be drawn and the picture displayed; and when he realized his mistake, with a modesty that did him honor he yielded up the prize, saying that whereas he had deceived the birds, Parrhasios had deceived him, an artist."

- Pliny the Elder, 5th century B.C. -

Willem Claesz. Heda, circa $1600-1663$
Computergraphics 2

(ases)

都

Cles

Aima-ladema: A

\qquad
$+2$
-
\qquad

-
\qquad

\qquad
\qquad

 Effects Needed for Physically Correct Rendering

- Remember one of the local lighting models from CG1
- All local lighting models fail to render one or more of the following effects:
- Soft Shadows (Halbschatten)
- Hard shadows (Schlagschatten) can be done using multi-pass OpenGL rendering (see CG1)
- Indirect lighting (sometimes also in the form of "color bleeding")
- Reflection of the scene on glossy surfaces, e.g., mirrors, polished surfaces, etc.
- Refraction, e.g., through water or glass surfaces
- Diffraction (Beugung)
- Participating media, e.g., fog, haze, dust in air
- ...
>Global Illumination
 \title{
The Principle of Ray-Tracing vs. Principle of Polygonal Rendering
}
 \title{
The Principle of Ray-Tracing vs. Principle of Polygonal Rendering
} O

$$
\begin{aligned}
& \text { for each pixel: } \\
& \text { for each polygon: }
\end{aligned}
$$

Raytracing can be considered an
 "inverse mapping" approach

```
```

```
```

for each pixel:

```
```

```
```

for each pixel:
for each polygon:

```
```

```
```

 for each polygon:
    ```
```

```
```

 for each polygon:
    ```
```

```
```

 for each polygon:
    ```
```

```
```

 for each polygon:
    ```
```

```
```

```NoneNone
```

```
-••
```


\qquad

$$
\begin{aligned}
& \text { Polygonal rendering (think "OpenGL") } \\
& \text { is a "forward-mapping" approach }
\end{aligned}
$$

\qquad
\square

.
.

-

Tracing

都

\square

Abstract

(2)

－
 2

58＊都

正

－
－
－Kansun
$\rightarrow-$
4sunctur
－
，

U1

9

 (

 \qquad

.

\square

 C號

mn

Abstract

-

Ray Tracing in the Animation Industry

Doc Hudson's chrome bumper with two levels of ray-traced reflection. (Copyright 2006 Disney/Pixar)

Ray-traced wine glasses from Ratatouille.
(Copyright 2007 Disney/Pixar)

https://www.menti.com/86xyuy7f9e

Bremen جilli
 The Rendering Equation

- Goal: photorealistic rendering
- The "solution": the rendering equation

$$
L_{o}\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega} \rho\left(x, \omega_{o}, \omega_{i}\right) L_{i}\left(x, \omega_{i}\right) \cos \left(\theta_{i}\right) \mathrm{d} \omega_{i}
$$

$L_{i}=$ the "intensity" of light incident on x from direction ω_{i}
$L_{e}=$ the "intensity" of light emitted (i.e., "produced") from x
into direction ω_{0}
$L_{o}=$ the "intensity" of light reflected from x
 into direction ω_{0}
$\rho=$ function of the reflectance coefficient = BRDF (to be def'd properly later)
$\omega=(\theta, \varphi)=$ a direction (two polar angles)
$\Omega=$ hemisphere around the normal

(4)

Output

Inputs

$$
L_{o}=L_{e}+\int_{\Omega} \rho \cdot L_{i} \cdot \cos (\theta) \mathrm{d} \omega
$$

Bemen
 Approximations to the Rendering Equation

- Solving the rendering equation is impossible!
- Observation: the rendering equation is a recursive function
- Consequently, a number of approximation methods have been developed that are based on the idea of following rays:
- Ray tracing (Whitted, Siggraph 1980,
"An Improved Illumination Model for Shaded Display")
- Lots of variations today:
e.g., photon mapping, bi-directional path tracing
- Current state of the art:

Turner Whitted, Microsoft Research

- Ray-tracing (aka. path tracing), combined with photon tracing, combined with Monte Carlo methods, combined with denoising filter

The Simple "Whitted-Style" Ray-Tracing

- Synthetic camera = viewpoint + image plane in world space

1. Shoot rays from camera through every pixel into scene (primary rays)
2. Compute the first hit with any of the objects in scene
3. From there, shoot rays to all light sources (shadow feelers)
4. If a shadow feeler hits another obj \rightarrow point is in shadow w.r.t. that light source.

Otherwise, evaluate a lighting model, e.g., Phong (see CG1)
5. If the hit obj is glossy, then shoot reflected rays into scene (secondary rays) \rightarrow recursion
6. If the hit object is transparent, then shoot refracted ray \rightarrow more recursion

The Ray Tree

- Basic idea of ray-tracing: construct ray paths from the light sources to the eye, but follow those paths "backwards"
- Leads (conceptually!) to a tree, the ray tree:

E 1 = primary ray
$\mathrm{Ri}=$ reflected rays
$\mathrm{Ti}=$ transmitted rays
$\mathrm{Si}=$ shadow rays

．

\square

April 2024
Apl 2044

ntroduction \＆Displays

Visualizing the ray tree can be very helpful for debugging

\qquad
（

（ can be very helpful for glibly

－

A Little Bit of Ray-Tracing Folklore

Paul Heckbert's business card (back), ca. 1994:
typedef struct\{double $x, y, z\}$ vec; vec $U, b l a c k, a m b=\{.02, .02, .02\} ;$ struct sphere\{ vec cen,color;double rad,kd,ks,kt,kl,ir\}*s,*best,sph[]=\{0.,6.,.5,1.,1.,1.,.9,

$$
.05, .2, .85,0 ., 1.7,-1 ., 8 .,-.5,1 ., .5, .2,1 ., .7, .3,0 ., .05,1.2,1 ., 8 .,-.5, .1, .8, .8
$$

$$
1 ., .3, .7,0 ., 0 ., 1.2,3 .,-6 ., 15 ., 1 ., .8,1 ., 7 ., 0 ., 0 ., 0 ., .6,1.5,-3 .,-3 ., 12 ., .8,1 .,
$$

1.,5.,0.,0.,0.,.5,1.5,\};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;\{return A.x*B.x+A.y*B.y+A.z*B.z;\}vec vcomb(a,A,B) double $a ;$ vec $A, B ;\{B . x+=a *$ A.x;B.y+=a*A.y;B.z+=a*A.z;return B;\}vec vunit(A)vec A;\{return vcomb(1./sqrt($\operatorname{vdot}(A, A)), A, b l a c k) ;\}$ struct sphere*intersect(P,D)vec $P, D ;\{b e s t=0 ; \operatorname{tmin}=1 e 30 ; s=$ sph +5 ; while(s-->sph)b=vdot($D, U=v c o m b(-1 ., P, s->c e n)), u=b * b-v d o t(U, U)+s->r a d * s$ $->\mathrm{rad}, \mathrm{u}=\mathrm{u}>0$? sqrt(u): $1 \mathrm{e} 31, \mathrm{u}=\mathrm{b}-\mathrm{u}>1 \mathrm{e}-7$? $\mathrm{b}-\mathrm{u}: \mathrm{b}+\mathrm{u}, \mathrm{tmin}=\mathrm{u}>=1 \mathrm{e}-7 \& \& \mathrm{u}<\operatorname{tmin}$? best=s, $\mathrm{u}:$ tmin;return best;\}vec trace(level,P,D)vec P,D;\{double d,eta,e;vec N,color; struct sphere*s, *l;if(!level--)return black;if(s=intersect(P,D)); else return amb;color=amb;eta=s->ir; $d=-v d o t(D, N=v u n i t(v c o m b(-1 ., P=v c o m b(t m i n, D, P), s->c e n ~$))); if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=-d;l=sph+5; while(l-->sph)if((e=l $\left.\left.->k l^{*} \operatorname{vdot}(N, U=v u n i t(v c o m b(-1 ., P, I->c e n)))\right)>0 \& \& i n t e r s e c t(P, U)==I\right) \operatorname{color}=v c o m b(e$,I->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta* eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)), vcomb(s->kd, color,vcomb(s->kl,U,black))) ;\}main()\{printf("\%d \%d $\backslash n ", 32,32$); while(yx<32*32) U. $x=y x \% 32-32 / 2, U . z=32 / 2-y x++/ 32, U . y=32 / 2 / \tan (25 / 114.5915590261)$,

U=vcomb(255., trace(3,black,vunit(U)),black),printf("\%.Of \%.Of \%.Of $\backslash n ", U) ;\}$ /*minray!*/

Another ray tracer in 256 lines of $\mathrm{C}++$:

https://github.com/ssloy/tinyraytracer
(Also won the International Obfuscated C Code Contest)!

-
$-5-1+2$ Computergraphics 2
-

\square路
\qquad號

\square

蹅
，

c．Zachmann \quad Computergraphics 2
 －
 Computergraphics 2
 G．Zachmann
 c．Zachmann \quad Computergraphics 2
 Computergraphics 2
 Computergraphics 2
 G．Zachmann
 G．Zachmann
 c．Zachmann \quad Computergraphics 2
 c．Zachmann \quad Computergraphics 2
 c．Zachmann \quad Computergraphics 2
 G．Zachmann Computergraphics 2

 Ray－Traci

 Ray－Traci}
Benem
 Basic Definition of Terminology

- Ray tracing = geometric algorithm to compute intersections of rays with the scene (aka. ray-based visibility)
- Path tracing $=$ algorithm to compute global illumination by shooting rays in all kinds of (random) directions (aka. random sampling, aka. Monte Carlo integration)

Basic Ingredients Needed for Ray-Tracing

1. Primary rays \rightarrow camera model
2. Secondary rays and shadow feelers \rightarrow (geometric) optics laws
3. Combining all incoming light into "one" outgoing light \rightarrow lighting models

- Note: shadow feelers are special types of rays, are usually handled special
- So, we have 3 types of rays

Bremen
 A Simple Camera Model (Ideal Pin-Hole Camera)

The main loop of ray-tracers
def gen_prim_rays(vec3 a, vec3 b, vec3 A, vec3 C):
for i = 0 .. hor_res:
for $\mathrm{j}=0$.. vert_res:
ray.from $=\mathrm{A}$
s = (i/hor_res - 0.5) * h
t = (j/vert_res - 0.5) * w ray.at $=C+s * a+t * b$
vec3 color $=$ traceRay (0 , ray) putPixel(x, y, color)

都

．
號

 ，

都
－

Digression: Johannes Vermeer

-

Computergraphics 2 --
 \qquad

 Computergraphics 2

 \qquad
 Computergraphics 2
 Cachmann
 Computergraphics 2
 (Zachmann
 -
 April
 April 2024
 I

Other Strange Cameras

- With ray-tracing, it is easy to implement non-standard projections
- For instance: fish-eye lenses, projections on a hemi-sphere (= the dome in Omnimax theaters), panoramas

Quiz:
How was this funny projection achieved?

8 Benememe
 A Local Lighting Model

- We will use Phong (for sake of simplicity)
- The light emanating from a point on a surface:

$$
L_{\text {total }}=L_{\text {Phong }}+\ldots \text { more terms (later) }
$$

$$
L_{\text {Phong }}=\sum_{j=1}^{n}\left(k_{d} \cos \phi_{j}+k_{s} \cos ^{p} \Theta_{j}\right) \cdot I_{j}
$$

$k_{d}=$ reflection coefficient for diffuse reflection
$k_{s}=$ reflection coefficient for specular reflection
$I_{j}=$ light coming in from j-th light source
$n=$ number of light sources

- Of course, we add a light source only, if it is visible!

Benem
 Generation of Secondary Rays

- Assumption: we found a hit for the primary ray with the scene
- Then the reflected ray is:

$$
\begin{aligned}
& \qquad \begin{array}{l}
\mathbf{r}=((\mathbf{v} \cdot \mathbf{n}) \cdot \mathbf{n}-\mathbf{v}) \cdot 2+\mathbf{v} \\
=2(\mathbf{v} \cdot \mathbf{n}) \cdot \mathbf{n}-\mathbf{v}
\end{array} \\
& \text { assuming }\|\mathbf{n}\|=1
\end{aligned}
$$

Specular Reflection

- Additional term in the lighting model:

$$
L_{\text {total }}=L_{\text {Phong }}+k_{s} L_{r}+\ldots \text { more terms (later) }
$$

$L_{r}=$ reflected light coming in from direction r
i.e, here we consider only specular reflection (i.e., no scattering)
$k_{s}=$ material coefficient for specular reflection (the "color" of the object)

The Refracted Ray (a.k.a. Transmitted Ray)

- Law of refraction [Snell, ca. 1600] :

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

- Computation of the refracted ray:

$$
\begin{aligned}
& \mathbf{t}=\frac{n_{1}}{n_{2}}\left(\mathbf{d}+\mathbf{n} \cos \theta_{1}\right)-\mathbf{n} \cos \theta_{2} \\
& \cos \theta_{1}=-\mathbf{d n} \\
& \cos ^{2} \theta_{2}=1-\frac{n_{1}^{2}}{n_{2}^{2}}\left(1-(\mathbf{d n})^{2}\right)
\end{aligned}
$$

Typical indices of refraction (IOR)			
Air	Water	Glass	Diamond
1.0	1.33	$1.5-1.7$	2.4

FYI: Derivation of the Equation on the Previous Slide

$$
\begin{aligned}
& |\mathbf{n}|=|\mathbf{b}|=1 \\
& \mathbf{t}=\cos \theta_{2} \cdot(-\mathbf{n})+\sin \theta_{2} \cdot \mathbf{b} \\
& \mathbf{d}=\cos \theta_{1} \cdot(-\mathbf{n})+\sin \theta_{1} \cdot \mathbf{b} \\
& \mathbf{b}=\frac{\mathbf{d}+\mathbf{n} \cdot \cos \theta_{1}}{\sin \theta_{1}} \\
& \mathbf{t}=-\mathbf{n} \cdot \cos \theta_{2}+\frac{\sin \theta_{2}}{\sin \theta_{1}}\left(\mathbf{d}+\mathbf{n} \cdot \cos \theta_{1}\right)
\end{aligned}
$$

$\cos \theta_{2}$ ausrechnen:

$$
\begin{aligned}
\sin \theta_{2} & =\frac{n_{1}}{n_{2}} \sin \theta_{1} \\
\sin ^{2}+\cos ^{2} & =1 \\
\cos ^{2} \theta_{2} & =1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{1}\right)^{2}
\end{aligned}
$$ －

Specular Transmission

- The complete lighting model (for now):

$$
L_{\text {total }}=L_{\text {Phong }}+k_{s} L_{r}+k_{t} L_{t}
$$

$L_{t}=$ transmitted light coming in from direction t
$k_{t}=$ material coefficient for refraction (the "color" of the transparent material)

- L_{r} and L_{t} are calculated recursively, of course!

Which One is the "Correct" Normal?

- Food for thought: do the computations of the reflected and transmitted rays also work, if the normal of the surface is pointing in the "wrong" direction?
- Which direction is the wrong one anyway?

.

D

Remember our naïve summation of all incoming lights:

$$
L_{\text {total }}=L_{\text {Phong }}+k_{s} L_{r}+k_{t} L_{t}
$$

The Fresnel Terms for Translucent/Transparent Objs

- The reflectivity ρ depends on the refractive indices of the involved materials, and on the angle of incidence:

$$
\begin{aligned}
\rho_{\|} & =\frac{n_{2} \cos \theta_{1}-n_{1} \cos \theta_{2}}{n_{2} \cos \theta_{1}+n_{1} \cos \theta_{2}} \\
\rho_{\perp} & =\frac{n_{1} \cos \theta_{1}-n_{2} \cos \theta_{2}}{n_{2} \cos \theta_{1}+n_{1} \cos \theta_{2}} \\
\rho & =\frac{1}{2}\left(\rho_{\|}^{2}+\rho_{\perp}^{2}\right)
\end{aligned}
$$

- The correct summation of the incoming lights is:

$$
L_{\text {total }}=L_{\text {Phong }}+\rho k_{s} L_{r}+(1-\rho) k_{t} L_{t}
$$

- Example: Air $(n=1.0)$ to glass $(n=1.5)$, angle of incidence $=$ perpendicular

$$
\rho_{\|}=\frac{1.5-1}{1.5+1}=\frac{1}{5} \quad \rho_{\perp}=\frac{1-1.5}{1.5+1}=\frac{1}{5} \quad \rho=\frac{1}{2} \cdot \frac{2}{25}=4 \%
$$

- I.e., when moving perpendicularly from air to glass, 4% of the light is reflected, the rest is refracted
- Common approximation of the Fresnel term [Schlick 1994]:

$$
\rho(\theta) \approx \rho_{0}+\left(1-\rho_{0}\right)(1-\cos \theta)^{5}, \quad \rho_{0}=\left(\frac{n_{2}-1}{n_{2}+1}\right)^{2}
$$

where $\rho_{0}=$ Fresnel term for perpendicular angle of incidence (just measure material), and $\quad \theta=$ angle between incoming ray and normal in the thinner medium (i.e., the larger angle)

Demo for Refraction Including Fresnel Terms

Ray-Tracing with Fresnel Term

Ray-Tracing with Fresnel Term

Ray-Tracing with Fresnel Term
ค.
ค.

G

Attenuation (Dämpfung) in Participating Media

- When light travels through a medium, its intensity is attenuated, depending on the length of its path through the medium
- The Lambert-Beer Law governs this attenuation:

$$
I(s)=I_{0} e^{-\alpha s}
$$

with $a=$ some material constant, and
$s=$ distance travelled in medium

Bremen
 Scattering in Participating Media

1. Mie scattering

- Shape of distribution

- Size of particles > wavelength (e.g., haze or dust particles)
- Scattered energy does not depend on wavelength

2. Rayleigh scattering

- Shape of distribution
- Size of particles < 0.1 * wavelength, i.e. molecules $\left(\mathrm{O}_{2}, \mathrm{NO}\right)$
- Scattered energy does depend on wavelength
- Equation of Rayleigh scattering:

$$
L_{\mathrm{out}}=k_{\mathrm{ss}} \frac{1+\cos ^{2} \theta}{2} \frac{1}{\lambda^{4}} L_{\mathrm{in}}
$$

- Blue sky, white sky, red sky:

- Remember, the atmosphere is a relatively thin hull!
- During sunset, the path through air is "long"
- "In-scattering" and "out-scattering" (blue vs. red sky)

Bremen
 Dispersion, Spectral Raytracing

- In reality, the refractive index n depends on the wavelength!
- This effect cannot be modelled any more with simple "RGB light"; this requires a spectral ray-tracer
- Instead of 3 channels, we simulate $10+$ channels

Uremen
Uremen
Uremen
Uremen

\qquad

 56路

 －

Example with Fresnel Terms and Dispersion（RGB only）
 Example kith mesmer rems ancispersion（mem y

五 （2）

[^0]－ （a）

路

－ \square $+$都
-
（a ser）

\qquad

[^1]
\mathbf{R}_{1}^{c}

\qquad

Bremen
 Intersection Computations Ray against Primitive

- Amounts to the major part of the computation time
- Given: a set of objects (e.g., polygons, spheres, ...) and a ray

$$
P(t)=O+t \cdot \mathbf{d}
$$

- Wanted: the line parameter t of the first intersection point $P=P(t)$ with the scene

Intersection of Ray with General Polygon

- Intersection of the ray (parametric) with the supporting plane of the polygon (implicit) \rightarrow point
- Test whether this point is in the polygon:
- Takes place completely in the plane of the polygon
- 3D point is in 3D polygon \Leftrightarrow 2D point is in 2D poly
- Project point \& polygon:
- Along the normal: too expensive
- Orthogonal onto coord plane: simply omit one of the 3 coords of all points involved
- Test whether 2D point is in 2D polygon:
- Odd-even test using another (2D) ray
- If triangle \rightarrow barycentric coord test

Interludium: the Complete Ray-Tracing-Routine

```
traceRay( ray ):
    hit = intersect( ray )
    if no hit:
        return no color
    reflected_ray = reflect( ray, hit )
    reflected_color = traceRay( reflected_ray )
    refracted ray = refract( ray, hit )
    refracted_color = traceRay( refracted_ray )
    for each lightsource[i]:
    shadow_ray = compShadowRay( hit, lightsource[i] )
        if intersect(shadow_ray):
        light_color[i] = 0
    overall_color = shade( hit,
        reflected color,
        refracted_color,
        light_color )
    return overall_color
```


Intersection of Ray with Triangle

- Use same method like ray-polygon; or
- Be clever: use projection and barycentric coords
- Intersect ray with plane (implicit form) $\rightarrow t \rightarrow$ point in space
- Project point \& triangle on coord plane
- Compute barycentric coords of 2D point
- Barycentric coords of 2D point $(a, \beta, \gamma)=$ barycentric coords of orig. 3D point! (w/o proof)

- 3D point is in triangle $\Leftrightarrow a, \beta, \gamma>0$, with $a+\beta+\gamma=1$
- Alternative method: see Möller \& Haines "Real-time Rendering"
- (Faster method exists, if intersection point is not needed [Segura \& Feito])
- Line equation: $X=P+t \cdot d$
- Plane equation: $\quad X=A+r \cdot(B-A)+s \cdot(C-A)$
- Equate both \rightarrow system of linear equations:

$$
-t \cdot \mathbf{d}+r \cdot(B-A)+s \cdot(C-A)=P-A
$$

- Write it in matrix form:

$$
\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
-\mathbf{d} & \mathbf{u} & \mathbf{v} \\
\vdots & \vdots & \vdots
\end{array}\right)\left(\begin{array}{l}
t \\
r \\
s
\end{array}\right)=\mathbf{w}
$$

where

$$
\begin{aligned}
& \mathbf{u}=B-A \\
& \mathbf{v}=C-A \\
& \mathbf{w}=P-A
\end{aligned}
$$

- Use Cramer's rule:

$$
\begin{aligned}
& \left(\begin{array}{l}
t \\
r \\
s
\end{array}\right)=\frac{1}{\operatorname{det}(-\mathbf{d}, \mathbf{u}, \mathbf{v})} \cdot\left(\begin{array}{c}
\operatorname{det}(\mathbf{w}, \mathbf{u}, \mathbf{v}) \\
\operatorname{det}(-\mathbf{d}, \mathbf{w}, \mathbf{v}) \\
\operatorname{det}(-\mathbf{d}, \mathbf{u}, \mathbf{w})
\end{array}\right) \quad \operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \\
& \left(\begin{array}{l}
t \\
r \\
s
\end{array}\right)
\end{aligned}=\frac{1}{(\mathbf{d} \times \mathbf{v}) \cdot \mathbf{u}} \cdot\left(\begin{array}{c}
(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v} \\
(\mathbf{d} \times \mathbf{v}) \cdot \mathbf{w} \\
(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{d}
\end{array}\right), ~ l
$$

- Cost: 2 cross products +4 dot products
- Yields both line parameter t and barycentric coords r, s of hit point
- Still need to test whether r, s in $[0,1]$ and $r+s<=1$

Intersection of Ray and Box

- Box is most important bounding volume
- Here: just axis-aligned boxes ($\mathrm{A} A \mathrm{BB}=$ = axis-aligned bounding box)
- AABB is usually specified by two extremal points

$$
\left(x_{\min }, y_{\min }, z_{\min }\right) \text { and }\left(x_{\max }, y_{\max }, z_{\max }\right)
$$

- Idea of the algorithm:

- A box is the intersection of 3 slabs (slab = subset of space enclosed between two parallel planes)
- Each slab cuts away a specific interval of the ray
- So, successively consider two parallel (= opposite) planes of the box

The Algorithm

```
let }\mp@subsup{t}{\mathrm{ min }}{=}=-inf, t tmax = +inf
loop over all (3) pairs of planes:
    intersect ray with both planes
        t1, t2
    if t2 < t1:
        swap t1, t2
    // now t1 < t2 holds
    tmin
    tmax }\longleftarrow=\operatorname{min}(\mp@subsup{t}{\mathrm{ max }}{},t2
// now: [t min},\mp@subsup{t}{max}{m}]=\mathrm{ interval inside box
if }\mp@subsup{t}{\mathrm{ min }}{}>\mp@subsup{t}{\operatorname{max}}{}->\mathrm{ no intersection
if }\mp@subsup{t}{\mathrm{ max }}{}<0->\mathrm{ no intersection
```


Remarks

- Optimization: both planes of a slab have the same normal \rightarrow can save one dot product
- Remark: the algorithm also works for "tilted" boxes (called OBBs = oriented bounding boxes)
- Further optimization: in case of AABB, exploit the fact that the normal has exactly one component $=1$, others $=0$!
- Warning: "shit happens"
- Here: test for parallel situations!
- In case of 2D AABB:

```
if |dx|
    if }\mp@subsup{P}{x}{}<\mp@subsup{x}{\mathrm{ min }}{|}||\mp@subsup{P}{x}{}>\mp@subsup{x}{\mathrm{ max }}{}\mathrm{ :
        ray doesn't intersect box
    else:
        t
```


Intersection Ray-Sphere

- Assumption: d has length 1
- The geometric method:

$$
\begin{aligned}
& |t \cdot \mathbf{d}-\mathbf{m}|=r \\
& (t \cdot \mathbf{d}-\mathbf{m})^{2}=r^{2} \\
& t^{2}-2 t \cdot \mathbf{m d}+\mathbf{m}^{2}-r^{2}=0
\end{aligned}
$$

- The algebraic method: insert ray equation into implicit sphere equation
- There are many more approaches ...

The algorithm, with a small optimization

```
calculate m}\mp@subsup{\mathbf{m}}{}{2}-\mp@subsup{r}{}{2
calculate b=m.d
if }\begin{array}{rll}{\mp@subsup{m}{}{2}-\mp@subsup{r}{}{2}}&{>=0}&{// ray origin is outside sphere}\\{\mathrm{ and b <= 0: }}&{// and direction away from sphere}
then
    return "no intersection"
let d= b
if }\alpha<0\mathrm{ :
    return "no intersection"
if m}\mp@subsup{\boldsymbol{m}}{}{2}-\mp@subsup{r}{}{2}>\varepsilon
    return tr = b-\sqrt{}{d} // enter; t t is > 0
else:
    return t2 }=b+\sqrt{}{d}\quad// leave; t2 is >0 (t. < < )
```

- Ray-sphere intersection is so easy that all ray-tracers have spheres as
geometric primitives! ©
- Ray-sphere intersection is so easy that all ray-tracers have spheres as
geometric primitives! ©
- Ray-sphere intersection is so easy that all ray-tracers have spheres as
geometric primitives! ©
\qquad C
- Ray-sphere intersection is so easy that all ray-tracers have spheres as
geometric primitives! ©
- Ray-sphere intersection is so easy that all ray-tracers have spheres as
geometric primitives! ©

- Ray-sphere intersection is so easy that all ray-tracers have spheres as
geometric primitives! ©

Typical Classes in the Software Architecture of a Raytracer

- Class for storing lightsources (here, just positional light sources):

```
Vector m_location; // Position
Vector m_color; // Farbe
```

- Class for storing the material of surfaces:

```
Vector m_color; // Farbe der Oberfläche
float m_diffuse; // Diffuser / Spekularer
float m_specular; // Reflexionskoeff. [0..1]
float m_phong; // Phong-Exponent
```

- A class for rays:

Vector m_origin;	// Aufpunkt des Strahls
Vector m_direction;	// Strahlrichtung

- Class for passing around data about intersections (hit):
- Important class
- Records all kinds of information about an intersection point

| Ray m_ray; | // Strahl |
| :--- | :--- | :--- |
| float m_t; | // Geradenparameter t |
| Object* m_object; | // Geschnittenes Objekt |
| Vector m_location; | // Schnittpunkt |
| Vector m_normal; | // Normale am Schnittpunkt |

- Object3D = abstract


```
// abstract intersection methods: ray against any object
virtual bool closestIntersection( Intersection * hit ) = 0;
virtual bool anyIntersection( const Ray & ray, float max_t,
                            Intersection * hit ) = 0;
// normal at hit point
virtual Vector calcNormal( Intersection * hit ) = 0;
// material of object
int getMaterialIndex() const;
```

- Camera:
- Captures all properties of a virtual camera, e.g., from, at, up, angle
- Generates primary rays for all pixels
- Scene:
- Stores all data about the scene
- List of all objects
- List of all materials
- List of all light sources
- Camera
- Offers methods for calculating intersection between ray and geometry
- Usually also stores some acceleration data structure
(4) Ray-Tracing Height Fields
- Height Field = all kinds of surfaces that can be described by such a function

$$
z=f(x, y)
$$

- Examples: terrain, measurements sampled on a plane, 2D scalar field

Rendered

Height field as Bitmap
Us

Example for Terrains

SS April 2024
-2
\square

$-$
\qquad

2
2

Bonn University
FPS: Triangles:
-

- 4

Lactimanti
FPS: Triangles:
\square
:

 Ray-Tracing

Computergraphik 1
 比
 EUJ）
 USJ

 Computergraphik $1 \quad$ Vallis Marineris，Mars；presented by Phil Christensen，Arizona State University（http：／／mars．jp．．nasa．gov ） Ans 2024 G．Zachmann \quad Introduction \＆Displays
 Computergraphik $1 \quad$ Vallis Marineris，Mars；presented by Phil Christensen，Arizona State University（http：／／mars．jp．．nasa．gov ） Ans 2024 G．Zachmann \quad Introduction \＆Displays
 r

 （http：／／mars．jpl．nasa．gov ） Introduction \＆Displays
 Bremen
 －

 帾
 I
 C．Zachmann Computergraphik 1
 C．Zachmann
 C．Zachmann Computergraphik 1
 Valis Marineris，Mars；presented by Phil Christensen，Arizona State University（http：／／mars．jpl．nasa．gov） Ws 2024 Computergraphin 1

 Computergraphik 1
 C．Zachmann

號都

The Situation

- Given:
- Ray
- Array [0...n]x[0...n] with heights
- The naïve method to ray-trace a height field:
- Convert to $2 n^{2}$ triangles, test ray against each triangle
- Problems: slow, needs lots of memory
- Goal: direct ray-tracing of a height field represented as 2D array

The Method

1. Reduce the dimension:

- Project ray into xz plane

2. Visit all cells that are hit by the ray, starting with the nearest one

- Notice similarity to scan conversion!
- Use one of the algorithms from CG1 :)

3. Test ray against the surface patch spanned by the 4 corners of the cell

Intersection of Ray with Surface Patch of a Cell

- Naïve methods:
- "Nearest neighbor":
- Compute average height of the 4 corner height values
- Intersect ray with horizontal square of that average height

- Problem: very imprecise
- Tessellate by 2 triangles:
- Construct 2 triangles from the 4 corner points
- Problem: tessellation is not unique, diagonal edge could produce severe artefact

- Better: bilinear interpolation
- Surface $=$ bilinear interpolation of heights along x and y
- (The surface is called a parabolic hyperboloid)
- Insert ray equation into bilinear equation of surface \rightarrow quadratic equation for line parameter t

(4) The evil ε

- What happens when the origin of a ray is "exactly" on the surface of an object?
- Remember: floating-point calculations are always imprecise!

- Consequence: in subsequent ray-scene intersection tests, the ray origin might appear to be inside the original object!
- Further consequence: we get wrong further intersection points!
- "Solution": move the origin of the ray by a small ε along the direction of the (new) ray

More Glitch Pictures
.

\square

UUß
 (Ǔ) AIP2013 AIP 2015 Raytrace "good" computergraphik 1
 (UJ) Bren
 (UJ) Bren
 AlP2013 AlP 2015 Raytrace "good" computergraphik
 AlP2013 AlP 2015 Raytrace "good" computergraphik
 UJI
 Bremen
 (UJ) Bren
 UJI
 UJI

Advantages \& Disadvantages

- Scan conversion:
- Fast (for a number of reasons)
- Well-suited for real-time graphics
- Supported by all graphics hardware
- Only heuristic solutions for shadows and transparent objects
- No interreflections
- Raytracing:
- Offers general and simple (in principle) solution for global effects, such as shadows, interreflection, transparent objects, etc.
- Much slower (unless you cast only primary rays)
- Not directly supported by most graphics hardware (is currently changing)
- Difficult to achieve real-time rendering

Other Advantages of Ray-Tracing

- Shines with scenes that contain lots of glossy/shiny surfaces and transparent objects
- Fairly easy to incorporate other object representations (e.g., CSG, smoke, fluids, ...)
- Only prerequisite: must be possible to compute the intersection between ray and object, and to compute the normal at the point of intersection
- No separate clipping step necessary

Limitations of (Simple) Whitted-Style Ray-Tracing

- No indirect lighting (e.g., by mirrors)
- No soft shadows (because only point light sources are modeled)
- Only specular (ideal) reflections
- Only perfect (specular) refractions
- With each camera movement, the complete ray tree must be recomputed, although an object's diffuse shading does not depend on the camera's position

- For all of these disadvantages, a number of remedies have been proposed ...

Example for the Problem of (Missing) Indirect Lighting: Caustics

- Caustics = reflected/transmitted light is concentrated in a point or, possibly curved, line on the surface of another object
- Problem:
- Ray-tracing follows light paths backwards

- Simple ray-tracing follows only one path

Bermen
 Solution: Distribution Ray Tracing

- Simple modification of ray-tracing to achieve
- Anti-aliasing
- Soft shadows
- Depth-of-field
- Shiny/glossy (specular-diffuse) surfaces
- Motion blur
- Was proposed under a different name:
- "Distributed Ray Tracing"
- Don't use that name ("distributed" = verteilt)

Anti-Aliasing with Ray-Tracing (a Quick Tour of Sampling)

- Shoot many rays per pixel, instead of just one, and average retrieved colors (hence "distribution")
- Four methods for constructing the rays:

1. Regular sampling

- Perhaps problems with Moiré patterns

2. Random sampling

- Can contain arbitrarily big "holes" and arbitrarily close samples

- Might result in noisy images

3. Stratification (aka jittered grid): combination of regular and random sampling, e.g., by placing a grid over the pixel, and picking one random position per cell

Results in a Real Raytraced Image

(U) Dart Throwing

 $=$ -

Benem
 Poisson Disk Sampling

- Definition:

A set of sample points (in a specific domain) is a Poisson disk sampling with radius r iff

1. it is "as random as possible"; and,
2. it satisfies the Poisson disk criterion, i.e., no two points are closer than the minimum distance r.

- Example Poisson sampling:

- Formal definition:

The point set $S=\left\{\mathbf{p}_{i}\right\}$ is a (maximal) Poisson disk sampling of some given domain D (e.g., a polygon), iff the following 3 conditions hold:

1. Empty disk property: $\forall \mathbf{p}, \mathbf{q} \in S, \mathbf{p} \neq \mathbf{q}:\|\mathbf{p}-\mathbf{q}\| \geq r$
2. Maximality: $\forall \mathrm{x} \in D \exists \mathbf{p} \in S:\|\mathbf{p}-\mathbf{x}\|<r$
3. Bias-free: the likelihood of a (new) sample being inside any subdomain $D^{\prime} \subseteq D$ is proportional to the area of the subdomain, provided D^{\prime} is completely outside all prior samples' disks (this is uniform sampling from the uncovered area)

- Many algorithms for Poisson sampling construction relax one of these conditions
- Importance of Poisson disk sampling:
- Best quality for N samples [Cook 1986]
- Poisson disk distribution occurs in natural objects (e.g., retina cells)
- Equivalent to "blue noise" spectrum = void in low frequency range, noise in high frequencies

 ． 路
號都

$$
\operatorname{lechex}_{2}
$$

[^2]－

Regular grid

Jittered grid

Poisson disk

Medium-long wavelength cones of a squirrel monkey

Bremen
 Generating Poisson-Disk Samplings

- The dart-throwing algorithm (ground truth, Cook 1986):

```
i = 0
while i < N:
    pi}=(\operatorname{rand}(0,1),rand(0,1) 
    d = min. distance of }\mp@subsup{p}{i}{}\mathrm{ to all other po, ..., p pi-1
    if d > r:
        i ++ // accept the sample
```

- Problem: it is very slow!

- A possible remedy:
- Represent "forbidden" (red) and allowed (white) region
- Throw darts only in white region
- Problem: representation of the white region is very complex
- Idea:
- Generate new points only on permissible boundary of current sample set

Fast (Sequential) Algorithm for Poisson Disk Pattern

- Works in any dimensiond
- Store samples (to be constructed) in array S[]
- Maintain background grid with cell size

$$
l=\frac{r}{\sqrt{d}}
$$

- No cell can contain more than one sample
- Grid = d-dimensional integer array (store as hash table):
- Value $=0 \rightarrow$ cell is empty
- Value $=i \rightarrow S[i]$ contains coords of the sample in this cell

- Output: $S=$ list of N samples (with Poisson disk property)
- During runtime, maintain $A=$ list of "active" samples (indices into S), which represent the "border" of the sampling

```
set S[0] = random point in domain (with uniform distrib.)
store pointer to S[1] in grid cell containing S[1]
A = {0}
while A is not empty:
    (+)
    choose random index j in A
    repeat at most k times:
        generate a candidate point q randomly and uniformly
            on the boundary of A[j]'s disk
        if min. distance of q to all points in S >= r:
        (*)
            add q to A, to S, and in grid
    if no new q was found after k attempts:
        delete A[j] from A // A[j] is no longer on "outskirts"
```

都

Algorithm Visualization

\qquad
\qquad .
*

35 ApII 2024
20<4

都
\square
\qquad ? -

,

${ }^{\circ}$

Complexity

- On step (*):
- No need to compute minimum distance from q to all S
- Just verify that no point in S is inside disk of radius r around q
- Visit 4^{d} neighboring cells (incl. own), each can contain at most 1 point
- Distance computation $\in \mathrm{O}(d)$
- On the \# iterations of the while loop (+):
- Let $N=$ \#iterations where a point $\in S$ is deleted from A
- This happens exactly N times
- In all other iterations, a point is added to S (and A)
- Every point gets inserted in A and deleted from A exactly once
- Overall: $2 N-1$ iterations, each is in $\mathrm{O}\left(d 4^{d}\right)=$ const (if $d=$ const)

- Overall complexity $\in O\left(N \cdot d 4^{d}\right)$
- If d is considered constant $\rightarrow \mathrm{O}(\mathrm{N})$

Results

Boundary Sampling

Dart Throwing

Denser, and
somewhat more regular

- Boundary sampling generates very good blue noise spectrum due to its extremely regular and dense sampling of the plane

Frequency spectrum, averaged over many sample sets generated with each method, respectively

radial variance

Sampling in Higher Dimensions
 (U)

-

(1)
(

3D samples

(2)
\qquad
\qquad

Performance

- Parallelization is possible and not too difficult [Wei 2008]
- "Just" have to prevent "congestion" of grid access operations
- Comparison of three methods generating 2D Poisson disk samplings:

	Parallel algo [Wei 2008]	Sequ. boundary sampling [Dunbar, et al.]	Hierarchical dart throwing [White et al. 2007]
\#samples/sec	4000 k	200 k	210 k

- Parallel generation of Poisson disk samplings in different dimensions [Wei 2008]:

	2D	3D	$4 D$	$5 D$	6D
\#samples/sec	4000 k	550 k	43 k	2 k	180

(

Result in Real Raytraced Image

Stratified (jittered), 4 samples/pixel

Approx. Poisson disk, 4 samples/pixel

No Anti-Aliasing With Anti-Aliasing

Digression: Many Other Applications of Poisson Sampling (w/o Details)

- Placing objects randomly, but neither "too far" from each other, nor "too close" to each other
- E.g., for "terrain dressing"

- Poisson sampling with local density control:
- Radius of disks is not constant
- Could be driven by Perlin noise
- Could be a given as grayscale image

SS April 2024

Meshing
（interior triangulations／tetrahedralizations） s）

－
Ray－Tracing
里
我
－
（tratizations）

\square

都

Lacnmann
$-$

都
\qquad

(ש) Soft Shadows, Penumbra

XVI. Léonard de Vinci (1452-1519). Lumière d'une fenêtre sur une sphère ombreuse avec (en par-
tant du haut) ombre intermédiaire, primitive, dérivée et (sur la surface, en bas) portée. Plume et lavis tant du haut) ombre intermédiaire, primitive, dérivée et (sur la surface, en bas) portée. Plume et lavis sur pointe de métal sur papier, $24 \times 38 \mathrm{~cm}$. Paris, Bibliothèque de l'Institut de France (ms. 2185 ; B.N. 2038. fo $14 \mathrm{r}^{\circ}$)

- Behind a lighted object, there are 3 regions:
- Completely lighted
- Umbra = completely in shadow
- Penumbra = partially in shadow

... and in Ray-Tracing

- So far, only 1 shadow feeler per light in the Phong model:

$$
L_{\text {Phong }}=\sum_{j=1}^{n} s_{j} \cdot \rho\left(\phi_{j}, \Theta_{j}\right) \cdot I_{j}, s_{i}= \begin{cases}1, & \text { light source visible } \\ 0, & \text { invisible }\end{cases}
$$

- Improvement: send many shadow feelers

$$
s_{i}=\frac{\# \text { passing shadow rays }}{\# \text { shadow rays sent }}
$$

- Three ways of sampling a lightsource:

1. Regular sampling of the area of the lightsource
2. Random sampling
3. Stratified sampling (just like with pixels/AA)

x_{1} ． － ．


```
都
``` 都
 ．
－

\section*{Better Glossy/Specular Reflection}
- So far, only one reflected ray:
- Problem, if the surface should be matte-glossy ...

- Solution (somewhat brute-force):
- Shoot many secondary, "reflected" rays
- Accumulate, weighted by the power-cosine law
\[
\cos ^{p} \Theta_{j}
\]
(notice coincidence with the Phong model)
都

The ray tree

\section*{res}

2

正

\section*{Generating a Poisson Disk Distribution on the Sphere}
- For sake of simplicity: generate just an approximation
- Prerequisite is Mitchell's best candidate algorithm:
```

set S[1] = random point in domain (with uniform distrib.)
for i = 2 .. N:
C = generate m (random) candidate points
for all p in C: compute dist(p,S) = min. distance to S
pick p* in C with maximal dist(p*,S) -> add p* to S

```
- Usually, \(m\) is increased with iteration count \(i\), e.g. \(m=i \cdot q\) with \(q=\) "quality" parameter
- Generates only an approximate Poisson disk sampling (not maximal one)
- Advantage: can add more points later / refine existing sampling pattern

\section*{Now for the Poisson disk distribution}
- Use Mitchell's best candidate algorithm directly on the sphere:
- Generate the candidate points directly on the sphere (w/ uniform distribution!)
- Computing the distance:
- Should use geodesic distance on the sphere
- Here, just approximate it by Euclidean distance
- Works okay because we are just interested in comparisons of distances anyway, and
\[
\left\|\mathbf{p}_{1}-\mathbf{q}\right\|<\left\|\mathbf{p}_{2}-\mathbf{q}\right\| \Leftrightarrow \operatorname{geo}-\operatorname{dist}\left(\mathbf{p}_{1}, \mathbf{q}\right)<\operatorname{geo}-\operatorname{dist}\left(\mathbf{p}_{2}, \mathbf{q}\right)
\]
- This "shortcut" will not work on 2-manifolds that have non-convex parts!

How to Generate Random Points on a Sphere with Uniform Distribution?
- Naïve approach 1: generate random uniform \(x, y, z\), then normalize (project onto sphere)
- Naïve approach 2: pick spherical coordinates (\(\lambda, \varphi\)) randomly and uniformly
- Method 1:
- Generate three random numbers \(x, y, z\) using Gaussian distribution, then normalize (\(x, y, z\))
- Method 2 (works less well in high dimensions):
- Generate random uniform \(x, y, z\) (i.e., in unit cube)
- Reject, if \(\|(x, y, z)\|>1\) (also reject, if \(<\varepsilon\))
- Normalize remaining \((x, y, z)\)

\section*{Random Points on a Sphere}

(\(\lambda, \phi\)) uniformly, randomly picked.

\(\lambda \in\left[-180^{\circ}, 180^{\circ}\right)\) uniformly, randomly; \(\phi=\arccos (2 \mathrm{x}-1)\), where \(\mathrm{x} \in[0,1)\) uniformly randomly picked.

Mitchell's best-candidate algorithm on the sphere.

Oh, and don't forget to drag the spheres!
Display a menu

\section*{Depth-of-Field (Tiefen(un-)schärfe)}
- So far: ideal pin-hole camera model
- For depth-of-field, we need to model real cameras

All rays starting from the image point, passing through the lens, must also pass through this focal point
- A class LensCamera would generate rays like this:
- Sample the whole shutter aperture by some distribution, shoot ray from each sample point through focal plane = image plane

- Remark:
- Again, use one of the four sampling methods for sampling the disc (= shutter)

2.
(4) Shutter Speed Artifacts
- A slower shutter speed means the shutter is open for longer time
- This can result in motion blur

\section*{Bemen \\ Motion Blur (Bewegungsunschärfe)}
- Goal: compute "average" image for time interval \(\left[t_{0}, t_{1}\right]\) during which objects move
- Sample time interval with several \(t \in\left[t_{0}, t_{1}\right]\)
- Shoot one primary ray per time \(t\)
- When computing the hit points (and secondary rays), use positions \(P=P(t)\) for all objects
- Average color of all rays for one pixel

\section*{Benemen \\ Common Myths}
- Myth: rasterization is linear, ray-tracing is sub-linear in the number of primitives
- Truth: rasterization uses LODs and various culling techniques
- Myth: rasterization is ugly, ray-tracing is clean
- Truth: when optimized, both are ugly
- Myth: ray-tracing is embarrassingly parallel
- Truth: not when optimization techniques are employed
- Historical note: when rasterization came up, people thought that is embarrassingly parallel, too
- Myth: ray-tracing and rasterization are incompatible
- Truth: they can co-exist just fine
- Example: the film Cars by Pixar (reflections, for instance, were done using ray-tracing, rest was rasterization)
```


[^0]:    （
    
    

[^1]:    （2） （a）
    

[^2]:    Ras

